
Cryptography

7 – Loose ends

G. Chênevert

November 18, 2019

mailto:gabriel.chenevert@yncrea.fr

Today

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

Recall: Generalized DLP

Let (G, ·) be a finite abelian group.

Given g ∈ G and x such that

x = g ξ = g · g · · · g︸ ︷︷ ︸
ξ

in G,

find ξ ≡
ν

logg (x), with ν = ordG(g), the smallest ν > 0 for which gν = 1.

Best known DL algorithm: O(ν
1
2) for a generic group G. (Much smaller for

G = (Z/nZ)×.)

Elliptic curves

Definition

An elliptic curve is a plane curve defined by an equation of the form

E : y2 = x3 + ax + b.

Example

a = 1
10 , b = 1

Addition on an elliptic curve

Given P,Q ∈ E , the line through P and Q intersects E at a third point, say R = (x , y).

Definition

P + Q := (x ,−y)

Fun fact: This makes E ∪ {O} into an abelian group!

(The point at infinity O = (0,∞) being the neutral element)

DLP on an elliptic curve

Given G ∈ E of (additive) order n and P ∈ E such that

P = mG = G + · · ·+ G︸ ︷︷ ︸
m

in E ,

find m ≡
n

logG (P).

(Easy to solve over the real or complex numbers)

Elliptic curves over finite fields

Instead: consider solutions modulo a fixed prime p

y2 ≡
p

x3 + ax + b

; E(Fp) elliptic curve over the finite field Fp

(a finite abelian group!)

Basic computations are easy...

...but the DLP is hard!

https://sagecell.sagemath.org/?z=eJwljrtuAlEMRPuV9h9uuZAt_Bjb10WqCGihRhSAUiBRrFCS749XVNZoznhmaZ9NpZOriYgH914HCslxuJZpAVKE9a5hZnDx7hiHW3lCkZ1ShZxJMxxp3WQcxmFX9u75fCw_j_vX7-vvezrsp2Uzn6_z7bJZieNKTGdJNlP1TEsOVioVhrlVX4kIIAEBEElMa_b0Tiq4NrOlsZMQKSOd5sZMoeLOtj4tJFKKeLfK9tg-mm5P_7fJM8Q=&lang=sage&interacts=eJyLjgUAARUAuQ==

Size of E

Theorem (Hasse bound)

#E(Fp) = 1 + p +O(
√

p)

hence #E(Fp) ≈ p.

We use elliptic curves with points G of large order n ≈ p.

ECDH

• Alice and Bob agree on ”safe” parameters E and G .

• Alice chooses a, computes A = aG in E .

• Bob choooses b, computes B = bG in E .

• Shared secret is

K := (ab)G = aB = bA.

ECElGamal

Keys:

• d private decryption key

• E = dG public encryption key

Alice wants to send a message M ∈ E to Bob.

ECElGamal

Encryption:

• Alice chooses random s, computes S = sG

• Computes shared secret K = sE

• Computes encrypted C = M + K

• Sends the pair (S , C)

Decryption:

Upon reception of a pair (S ,C), Bob

• Computes shared secret K = dS

• Recovers M = C − K

Parameter generation

To get ` bits of security:

• choose a 2`-bit prime p

• an elliptic curve E over Fp

• and a point G on E of (almost) prime order n that generates (most of) E(Fp).

Much harder to manufacture than e.g. for RSA – but can be reused.

Recommended curves

In the US, NIST proposed in 2005 a list of 5 elliptic curves of size

192, 224, 256, 384 and 521 bits

(as well as 5 curves over binary fields F2k)

· · ·

Dual EC DRBG controversy

Alternative: Brainpool curves

Also: recent concern about Suite B cf. rise of quantum computing!?

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://tools.ietf.org/html/rfc5639

Post-quantum cryptography

Ongoing NIST standardization process for quantum-resistant primitives.

Round 2: 17 public-key encryption primitives, 9 digital signature primitives.

Broadly fall into 4 categories:

• lattice-based

• code-based

• hash-based

• multivariate polynomial-based

Stay tuned!

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Today

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

Key management

Consider a pool of n users, each of which could want to communicate confidentially

with any other.

=⇒
(n
2

)
= n(n−1)

2 interactions to secure.

With a single secret key for every potential interaction:

every user needs to securely obtain and store n − 1 secret keys!

Purely asymmetric solution

Use public-key encryption for everything.

Every user needs access to any of the n − 1 other public keys

But: asymmetric ciphers are much slower than symmetric ones.

=⇒ hybrid systems are usually favored (but: full-fledged PKI needed)

Example: TLS/SSL

TLS 1.3 specification

• X.509 certificates are used to authenticate the parties

• A master secret is set up

• Bulk of communication encrypted with a symmetric cipher

• MACs are included for data integrity

Various combinations of cipers and MACs (cipher suites) are supported (providing

varying levels of security).

https://tools.ietf.org/html/rfc8446

Cipher suite: example

• RSA-PSS signature for server authentication

• ECDH for key agreement

• Sessions keys are derived from the master secret

• AES-CBC used for encryption

• SHA256-HMAC for message authentication

Agreed upon during initial handshake.

Comments

• Provides forward secrecy if fresh DH parameters are used every time

(recommended!)

• These parameters are signed, preventing man-in-the-middle attacks

• Session keys need to be refreshed after a while

• Often subject to downgrade attacks

Kerberos

Purely symmetric key management solution using a trusted key server S

Alice wants to communicate securely with Bob.

• Both set up secret keys kA and kB with the server.

• Alice asks the server for a secret key kAB to be used with Bob.

Needham-Schroeder algorithm (1978)

• The server replies to Alice with

E
(
kA, kAB ||E (kB , kAB)

)
.

• Alice decrypts this message and sends to Bob

E (kB , kAB).

Alice and Bob now have kAB and can start communicating securely.

Comments

• Nonces need to be included to prevent replay attacks

• Provides mutual authentication as well as confidentiality

• Man-in-the-middle attacks are not possible

• Server does not need to remember keys

• But: single point of failure

Today

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

How to trust others’ computations?

In various cryptographic protocols, Bob might worry that Alice is not doing things

properly

(read: cheats! – or makes mistakes)

and ask her for proofs of good conduct.

Bob: challenger

Alice: prover

Infamous example: proof of work

To make sure that Alice has access to suitable computing resources:

on input m, asks her to find a string k for which the binary representation of

H(m || k) starts with n zeros.

Partial collision problem: her best approach is to brute-force k

will take 2n trials on average

(this is what Bitcoin cryptominers do. . . with an ecological impact of epic proportions)

https://digiconomist.net/bitcoin-energy-consumption

Example: coin flip

Alice and Bob play a game.

Heads: A gives e100 to B, tails: B gives e100 to A.

Alice is responsible for tossing the coin.

Alice: ”Tails!”

Bob: ”Prove it!”

Secure coin flip

• Alice chooses a random large integer n

• Sends its SHA256 hash to Bob (commitment)

• Bob selects b ∈ {0, 1}, sends it to Alice

• Alice returns (n % 2)⊕ b (result of coin toss)

and n (proof of randomness)

Alice cannot manipulate the result unless she knows n and n′ of different parity with

the same hash!

Zero-knowledge proofs

Sometimes Alice wants to convince Bob of a certain statement, without revealing

anything else than the fact that this statement is true.

Example

Alice: ”I know ξ such that g ξ ≡
p

x”

Bob: ”Prove it!”

Zero-knowledge proof

Idea: Bob should present Alice with requests that she can only answer correctly if she

does indeed know ξ – and that Bob can check are answered correctly.

• Alice chooses a random number ρ ∈]]0, q[[and sends c ≡
p

gρ to Bob.

• Bob randomly requests Alice to either disclose

ρ or ρ+ ξ mod q.

Correctness

If Bob receives exponent ρ′ from Alice, he can check the agreement with commitment

c by computing

gρ′ or gρ′ · x−1 mod p.

Alice can easily fake a correct answer (without knowing ξ) to any of those questions

but not both. She would have to guess correctly which question Bob will ask before to

commit an adequate value of c .

If Alice answers correctly n requests in a row, Bob can trust that the probability that

she knows ξ is ≥ 1− 1
2n .

Today

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

Malleability, revisited

We mainly considered malleability a bad thing.

But it can actually be useful!

Example

Alice wants to compute the product of two `-bit integers m1 and m2. She could

• Encrypt them using plain-RSA with a 2`-bit modulus

• Send the ciphertexts to Bob and ask him to multiply them

• Decrypt the resulting ciphertext.

Homomorphic encryption

Certain ciphers preserve addition or multiplication.

Definition

A fully homomorphic cipher is one that preserves both addition and multiplication.

So what?

A cryptographer’s dream

1978

Suppose we have a fully homomorphic cipher

E :M = (F2,⊕,�) −→ C.

Then, since 
x and y = x � y

x or y = x ⊕ y ⊕ (x � y)

not x = 1⊕ x

we can build a processor that works with encrypted bits!

http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf

Fast-forward to 2009

Theorem (C. Gentry, Standford Ph.D. thesis)

Fully homomorphic ciphers exist.

Gentry’s original construction used lattice-based cryptography but a more elementary

one was later found.

In both approaches, one starts with a somewhat homomorphic cipher.

Somewhat homomorphic encryption

Secret key: a large odd integer k

Encryption: to encrypt b ∈ {0, 1}, choose random q and m with 2m ∈ [[0, k − 1[[and

set

c = qk + 2m + b.

Decryption: b = (c % k) % 2

Bootstrapping

These encrypted bits can support a limited number of operations while still decrypting

correctly.

After that: need to refresh encryption.

How to do that in the blind processor?

Decrypt through the encryption!

Refreshing encryption

• Alice sends c1 = E (k1, b) to Bob

• Bob computes c12 = E (k2, c1)

• Then computes c2 = D(k1, c12) through the encryption in order to get

c2 = E (k2, b).

(For this to work, an asymmetric version of the cipher needs to be used)

A somewhat homomorphic cipher only needs to support its own decryption circuit plus

one operation.

So is this used everywhere in the cloud?

Not yet. . . still an area of active research & development.

Current implementations are still somewhat impractical (slow / large keys)

One could in principle run arbitrary encrypted code on arbitrary encrypted data on a

remote processor and get the encrypted result back!

Today

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

And more...

• split secrets

• secure multipartite computation

• identity and attribute-based encryption

• digital currencies (blockchain)

• differential privacy

• quantum cryptography

New Crypto Wars episode coming soon to a computer near you . . .

https://en.wikipedia.org/wiki/Crypto_Wars

	Elliptic curves
	Key management
	Proofs
	Homomorphic encryption
	And more...

