Cryptography

7 — Loose ends

G. Chénevert
November 18, 2019

ISEN

ALL IS DIGITAL! ynerea

mailto:gabriel.chenevert@yncrea.fr

Today

Elliptic curves

Recall: Generalized DLP

Let (G, -) be a finite abelian group.
Given g € G and x such that

x=g'=g-g---g ing,
¢

find § = log,(x), with v = ordg(g), the smallest v > 0 for which g = 1.

Best known DL algorithm: (’)(y%) for a generic group G. (Much smaller for
G=(Z/nZ)*.)

Elliptic curves

Definition

An elliptic curve is a plane curve defined by an equation of the form

E: y>’=x3+ax+b.

Example
a= 1—10, b=1 ‘

Addition on an elliptic curve

Given P, Q € &, the line through P and Q intersects £ at a third point, say R = (x, y).
Definition

P+Q::(X7_y)

Fun fact: This makes £ U {O} into an abelian group!

(The point at infinity O = (0, 00) being the neutral element)

DLP on an elliptic curve

Given G € & of (additive) order n and P € £ such that

—_———

m

find m = log¢(P).

(Easy to solve over the real or complex numbers)

Elliptic curves over finite fields

Instead: consider solutions modulo a fixed prime p

v ’=x3+ax+b
p

~» E(IFp) elliptic curve over the finite field F,,

(a finite abelian group!)

Basic computations are easy...

p = 32806352226718822643429
a = 5740347588375554626864 "
b = 20798093206103976495852

E = EllipticCurve(GF(p),[a,b])

P = E([29155336995917130553754, 8373057744944244479010])
Q = E([3415221595160200314960, 11073266156995522792160])

24P + 3%Q

Evaluate Language: Sage v

Share

(9956939019642126506349 : 26680698275736540367982 : 1)

Help | Powered by SageMath

...but the DLP is hard!

https://sagecell.sagemath.org/?z=eJwljrtuAlEMRPuV9h9uuZAt_Bjb10WqCGihRhSAUiBRrFCS749XVNZoznhmaZ9NpZOriYgH914HCslxuJZpAVKE9a5hZnDx7hiHW3lCkZ1ShZxJMxxp3WQcxmFX9u75fCw_j_vX7-vvezrsp2Uzn6_z7bJZieNKTGdJNlP1TEsOVioVhrlVX4kIIAEBEElMa_b0Tiq4NrOlsZMQKSOd5sZMoeLOtj4tJFKKeLfK9tg-mm5P_7fJM8Q=&lang=sage&interacts=eJyLjgUAARUAuQ==

Size of £

Theorem (Hasse bound)

#E(Fp) = 1+ p+O(V/p)

hence #&(Fp) =~ p.

We use elliptic curves with points G of large order n = p.

ECDH

Alice and Bob agree on "safe” parameters £ and G.

Alice chooses a, computes A = aG in €.
e Bob choooses b, computes B = bG in £.

e Shared secret is

K := (ab)G = aB = bA.

ECEIGamal

Keys:

e d private decryption key

e £ = dG public encryption key

Alice wants to send a message M € £ to Bob.

ECEIGamal

Encryption:

e Alice chooses random s, computes S = sG
e Computes shared secret K = sE

e Computes encrypted C = M + K

e Sends the pair (S, C)

Decryption:
Upon reception of a pair (S, C), Bob

e Computes shared secret K = dS

e Recovers M = C — K
]

Parameter generation

To get £ bits of security:

e choose a 2/-bit prime p
e an elliptic curve & over I,

e and a point G on & of (almost) prime order n that generates (most of) ().

Much harder to manufacture than e.g. for RSA — but can be reused.

Recommended curves

In the US, NIST proposed in 2005 a list of 5 elliptic curves of size
192, 224, 256, 384 and 521 bits

(as well as 5 curves over binary fields Fyx)

Dual EC_DRBG controversy
Alternative: Brainpool curves
Also: recent concern about Suite B cf. rise of quantum computing!?

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://tools.ietf.org/html/rfc5639

Post-quantum cryptography

Ongoing NIST standardization process for quantum-resistant primitives.
Round 2: 17 public-key encryption primitives, 9 digital signature primitives.
Broadly fall into 4 categories:

e |attice-based
e code-based
e hash-based

e multivariate polynomial-based

Stay tuned!
]

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Today

Key management

Key management

Consider a pool of n users, each of which could want to communicate confidentially
with any other.

— ('2’) = ”(”2_1) interactions to secure.

With a single secret key for every potential interaction:

every user needs to securely obtain and store n — 1 secret keys!

Purely asymmetric solution

Use public-key encryption for everything.
Every user needs access to any of the n — 1 other public keys
But: asymmetric ciphers are much slower than symmetric ones.

= hybrid systems are usually favored (but: full-fledged PKI needed)

Example: TLS/SSL

TLS 1.3 specification

e X.509 certificates are used to authenticate the parties

e A master secret is set up

e Bulk of communication encrypted with a symmetric cipher

e MACGs are included for data integrity

Various combinations of cipers and MACs (cipher suites) are supported (providing
varying levels of security).

https://tools.ietf.org/html/rfc8446

Cipher suite: example

RSA-PSS signature for server authentication

ECDH for key agreement

Sessions keys are derived from the master secret

AES-CBC used for encryption

SHA256-HMAC for message authentication

Agreed upon during initial handshake.

Comments

Provides forward secrecy if fresh DH parameters are used every time

(recommended!)

These parameters are signed, preventing man-in-the-middle attacks

Session keys need to be refreshed after a while

Often subject to downgrade attacks

Kerberos

Purely symmetric key management solution using a trusted key server S

Alice wants to communicate securely with Bob.

e Both set up secret keys ka and kg with the server.

e Alice asks the server for a secret key kag to be used with Bob.

Needham-Schroeder algorithm (1978)

e The server replies to Alice with

E(kA, kag || E(kB, kAB))-

e Alice decrypts this message and sends to Bob

E(kg, kag)-

Alice and Bob now have kap and can start communicating securely.

Comments

Nonces need to be included to prevent replay attacks

Provides mutual authentication as well as confidentiality

Man-in-the-middle attacks are not possible

Server does not need to remember keys

But: single point of failure

Today

Proofs

How to trust others’ computations?

In various cryptographic protocols, Bob might worry that Alice is not doing things

properly

(read: cheats! — or makes mistakes)
and ask her for proofs of good conduct.
Bob: challenger

Alice: prover

Infamous example: proof of work

To make sure that Alice has access to suitable computing resources:

on input m, asks her to find a string k for which the binary representation of

H(m| k) starts with n zeros.

Partial collision problem: her best approach is to brute-force k
will take 2" trials on average

(this is what Bitcoin cryptominers do. . . with an ecological impact of epic proportions)

https://digiconomist.net/bitcoin-energy-consumption

Example: coin flip

Alice and Bob play a game.

Heads: A gives €100 to B, tails: B gives €100 to A.
Alice is responsible for tossing the coin.

Alice: "Tails!"

Bob: " Prove it!"”

Secure coin flip

Alice chooses a random large integer n

Sends its SHA256 hash to Bob (commitment)

Bob selects b € {0, 1}, sends it to Alice

Alice returns (n%2) @ b (result of coin toss)

and n (proof of randomness)

Alice cannot manipulate the result unless she knows n and n’ of different parity with
the same hash!

Zero-knowledge proofs

Sometimes Alice wants to convince Bob of a certain statement, without revealing
anything else than the fact that this statement is true.

Example

Alice: "I know ¢ such that g&¢ = x”
P

Bob: " Prove it!"”

Zero-knowledge proof

Idea: Bob should present Alice with requests that she can only answer correctly if she
does indeed know & — and that Bob can check are answered correctly.

e Alice chooses a random number p €]0, g[and sends ¢ = g” to Bob.
p
e Bob randomly requests Alice to either disclose

p or p+& mod q.

Correctness

If Bob receives exponent p’ from Alice, he can check the agreement with commitment
¢ by computing

gp/ or gpl cx71 mod p.

Alice can easily fake a correct answer (without knowing &) to any of those questions
but not both. She would have to guess correctly which question Bob will ask before to
commit an adequate value of c.

If Alice answers correctly n requests in a row, Bob can trust that the probability that
she knows & is > 1 — %

Today

Homomorphic encryption

Malleability, revisited

We mainly considered malleability a bad thing.
But it can actually be useful!

Example

Alice wants to compute the product of two ¢-bit integers m; and my. She could

e Encrypt them using plain-RSA with a 2¢-bit modulus
e Send the ciphertexts to Bob and ask him to multiply them

e Decrypt the resulting ciphertext.

Homomorphic encryption

Certain ciphers preserve addition or multiplication.

Definition

A fully homomorphic cipher is one that preserves both addition and multiplication.

So what?

A cryptographer’s dream

1978
Suppose we have a fully homomorphic cipher
E: M= (Fg,@,@) —C.

Then, since
Xxand y =xQ0y

XOry=x®y®(x0y)

not x =10 x

we can build a processor that works with encrypted bits!

http://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf

Fast-forward to 2009

Theorem (C. Gentry, Standford Ph.D. thesis)

Fully homomorphic ciphers exist.

Gentry's original construction used lattice-based cryptography but a more elementary
one was later found.

In both approaches, one starts with a somewhat homomorphic cipher.

Somewhat homomorphic encryption

Secret key: a large odd integer k

Encryption: to encrypt b € {0,1}, choose random g and m with 2m € [0, k — 1] and
set

c=qgk+2m+b.

Decryption: b = (c% k) %2

Bootstrapping

These encrypted bits can support a limited number of operations while still decrypting
correctly.

After that: need to refresh encryption.
How to do that in the blind processor?

Decrypt through the encryption!

Refreshing encryption

e Alice sends ¢; = E(ki, b) to Bob
e Bob computes c1p = E(k, c1)

e Then computes ¢ = D(k1, c12) through the encryption in order to get

Cy = E(kz, b)

(For this to work, an asymmetric version of the cipher needs to be used)

A somewhat homomorphic cipher only needs to support its own decryption circuit plus
one operation.

So is this used everywhere in the cloud?

Not yet. . .still an area of active research & development.
Current implementations are still somewhat impractical (slow / large keys)

One could in principle run arbitrary encrypted code on arbitrary encrypted data on a

remote processor and get the encrypted result back!

Today

And more...

And more...

split secrets

e secure multipartite computation

identity and attribute-based encryption

digital currencies (blockchain)

differential privacy

quantum cryptography
New Crypto Wars episode coming soon to a computer near you ...

https://en.wikipedia.org/wiki/Crypto_Wars

	Elliptic curves
	Key management
	Proofs
	Homomorphic encryption
	And more...

